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Abstract: 

 

Let T be a finite number of multiple set of  real numbers  taken as  increasing order of numbers. 

The purpose of this article is to study the different properties of MIN matrix and MAX matrix of the set T with  

min (xi, xj) and max (xi, xj) as their (i, j) entries, respectively. We are going to do this by interpreting these matrices 

as Fermat max and min matrices and applying the determinant formulae and the inverse formulae for Fermat MIN 

matrices and Fermat MAX matrices. 
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1 Introduction: 

 

MIN and MAX matrices are simple-structured matrices that appear  in many contexts in mathematics and 

statistics. As is pointed out in the next section, in some cases MIN matrices have an interpretation as covariance 

matrices of certain stochastic processes. Bhatia [1] shows that the MIN matrix [min(i, j)] is infinitely divisible, and 

in [2] he gives a more comprehensive treatment to this subject. Moyé studies the covariance matrix of Brownian 

motion, which appears to be a certain MIN matrix. Motivated by Moyé’s work, Neudecker, Trenkler and Liu [3] 

defined a more general matrix 

 

 A = 

[
 
 
 
 
 
 
a1 a1 a1
a1 a2 a2
a1 a2 a3

           

a1
a2
a3

⋮
⋮
⋮

a1 a2 a3              an]
 
 
 
 
 
 

  

 

(ai are real numbers for all i = 1, . . . , n), and proposed the following problems: 

 

– find a necessary and sufficient condition for A to be positive definite; 

– find the determinant of A; 

– find the inverse of A when A is nonsingular. 

Pierre de Fermat [4] conjectured that all numbers Fm = 22
m
+  1 for m = 0, 1, 2, . . . are prime. Nowadays 

we know that the first five members of this sequence are prime and that Fmis composite for 5 ≤ m ≤ 30. The 

numbers Fm are called Fermat numbers. If Fm is prime, we say that it is a Fermat prime. 

Until 1796 Fermat numbers were most likely a mathematical curiosity. The interest in the Fermat primes 

dramatically increased when C. F.Gauss [5] stated that there is a remarkable connection between the Euclidean 

construction (i.e., by ruler and compass) of regular polygons and the Fermat numbers. In particular, he proved that 

if the number of sides of a regular polygon is of the form 2kFm1
 . . . Fmr

 where k ≥ 0, r ≥ 0, and Fmi
 are distinct 

Fermat primes, then this polygon can be constructed by ruler and compass. The converse statement was established 

later by Wantzel. 

 
  

As we are going to see, there is a very natural and straight forward way to interpret MIN and  MAX 

matrices as meet and join matrices, whose properties are well studied. On the other hand, because of the simple 

structure of  MIN and  MAX matrices it is easy to apply basically any result related to meet and join matrices to 

MIN and  MAX matrices. At the same time we give some thoughts about how difficult it would be to verify these 

formulas by using only elementary linear algebra. The reader is also very welcome to amuse herself/himself by 

trying to answer the same question. 
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2 Preliminaries: 

 

We begin by presenting the definition of MIN and MAX matrices.  

Let T = {x1, x2, x3, ……… . , xn} be a finite multiple set of real numbers, where  x1 ≤ x2 ≤. . . . ≤ xn (in some cases, 

however, we need to assume that x1 < x2 < ⋯ < xn). The MIN matrix (T) min of the set T has min (xi, xj) as its (i,j) 

entry, whereas the MAX matrix of the set T has max (xi, xj) as its (i,j)  entry and is denoted by [T]max. Both matrices 

are clearly square and symmetric and they may be written explicitly as 

(T) min = 

[
 
 
 
 
 
 
x1 x1 x1
x1 x2 x2
x1 x2 x3

           

x1
x2
x3

⋮
⋮
⋮

x1 x2 x3              xn]
 
 
 
 
 
 

  and     [T] max =  

[
 
 
 
 
 
 
x1 x2 x3
x2 x2 x3
x3 x3 x3

           

xn
xn
xn

⋮
⋮
⋮

xn xn xn              xn]
 
 
 
 
 
 

 

 

 

2.1 Remark: 

 

Here it is convenient to assume that the elements of T are listed in increasing order, since this assumption 

does not affect most of the basic properties of the matrices (T) min and [T]max. Rearranging the indexing of the 

elements of the set T corresponds to multiplying the matrices (T) min and [T]max from left by a certain permutation 

matrix Q and from right by the matrix QT. Properties like determinant and  positive definiteness remain invariant in 

this operation. 

An interesting special case of MIN matrices is obtained by setting T = {1, 2, . . . n}. In this case we have 

 

 (T) min =  

[
 
 
 
 
 
 
1 1 1
1 2 2
1 2 3

        
1
2
3

⋮
⋮
⋮

1 2 3           n]
 
 
 
 
 
 

    and            [T] max  =    

[
 
 
 
 
 
 
1 2 3
2 2 3
3 3 3

        
n
n
n

⋮
⋮
⋮

n n n            n]
 
 
 
 
 
 

  

 

The matrix (T) min is, up to a positive scalar, the covariance matrix of a stochastic process with increments 

which possess the same variance and are uncorrelated. Bhatia provided six alternative proofs for its positive 

definiteness. This same matrix is also studied in a recent book about matrices in statistics, see [6].  Next we review 

some basic concepts of lattice theory. A partially ordered set (poset) is a pair (P, ⪯), where P is a nonempty set and 

⪯ is a reflexive, antisymmetric and transitive relation. A closed interval [x, y] in P is the set  

 

[x, y] = {z ∈ P/ x ⪯ z ⪯ y},           x, y ∈ P. 

  

Poset  (P, ⪯) is said to be locally finite if the interval [x, y] is finite for all x, y ∈ P. Poset (P, ⪯) is a chain if 

x ⪯ y or y ⪯ x for all x, y ∈ P. A lattice is a poset, where the infimum x ∧ y and the supremum x ∨ y exist for all x, y 

∈ P. It is easy to see that every chain is a lattice with x ∧ y = min(x, y) and x ∨ y = max(x, y).  

For example, the set of real numbers equipped with the usual ordering is a lattice and a chain, but it is not 

locally finite. The set of positive integers equipped with the divisibility relation is a locally finite lattice with  

x ∧ y = gcd (x, y) and x ∨ y = lcm (x, y), but this poset is not a chain. 

 

Next we need to define meet and join matrices. Let (P, ⪯) be a locally finite lattice. Moreover, let  

S = {x1, x2, x3, ……… . , xn} be a finite subset of P with distinct elements such that xi ⪯ xj ⇒ i ≤ j (in other words, the 

indexing of the elements xi ∈ S is a linear extension[7]). Finally, let f be a function on P to R (or to C). The meet 

matrix (S) f of the set S with respect to the function f  is the n × n matrix with f (xi ∧ xj) as its (i,j) entry. Similarly, 

the join matrix [S] f of the set S with respect to f is the n × n matrix with f (xi ∨ xj) as its (i,j) entry.  

Like MIN and MAX matrices, meet and join matrices are square and (complex) symmetric as well. A 

proper way to describe meet and join matrices might be to say that in meet and join matrices the entries are 

determined partly by the function f and partly by the set S and the underlying lattice structure (P, ⪯). 

 

3 Some important results for meet and join matrices: 

 

 In our study of MIN and MAX matrices we are going to make use of a couple of known results for meet 

and join matrices. The first one is about the structure of (S)f. For any two subsets S = {x1, x2, ……… xn} and  

T = {y1, y2, ………ym} of P, let E(S,T) = (eij) denote the nxm incidence matrix defined as  
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                            eij = {
1              if yj ≼ xi
0          otherwise.

   

 

Proposition 3.1. 

 

 [8], Let T = {y1, y2, ………ym} be a meet closed subset of P containing S = {x1, x2, ……… xn} (m≥n). Then 

    

    (S)f = EʌET =AAT , 

where E = E(S,T), ˄ = diag (ψT,f(y1), ………ψT,f(ym)), A = E˄
1

2 and ψT,f is defined recursively as      

ψT,f(yj) = f(yj) − ∑ ψT,f
yj<yj

(yj) 

 

The main  idea of this factorization can be generalized for join matrices and even for meet and join matrices on two 

sets. Furthermore, the other things, to find the following determinant and inverse formulas for meet and join 

matrices. In Propositions 3.3 and 3.5 the function ΦS,f is again the Möbius  inversion of f, but in this case the 

inversion is executed from above. In other words, 

 

ΦS,f(xk) = f(xk) − ∑ ΦS,f(xv)

xk≺xv

. 

Proposition 3.2. 

 

 If S is meet closed [9], then  

 

det (S)f =∏ψ
S,f
(xv)

n

v=1

=∏ ∑ ∑ f(w)µ
P
(w, z).

w≼zz≼xv
z≰xt
t<𝑣

n

v=1

 

    

Proposition 3.3. 

 

 If S is join closed [10], then  

 

det[𝑆] f =∏ ∑ f

xv<xt

(xt)μs(xv, xt)

n

v=1

=∏∑ ∑ f(w)µ
P
(z, w).

z≼wxv≼z
xt≰z
𝑣<𝑡

n

v=1

 

 

  

Proposition 3.4. 

 

Suppose that S is meet closed [9]. If (S)f  is invertible, then the inverse of (S) f is the n × n matrix  

B = (bij), where 

  

bij = ∑
(−1)i+j

ψS,f(xv)
detE(Si

k)detE(Sj
k)

n

k=1

 

Where E(Si
k) is the (n − 1) × (n − 1) sub matrix of E(S) obtained by deleting the ith row and the kth column of E(S), 

or 

   

bij = ∑
µS(xi, xj)µS(xj, xk)

ψS,f(xk)
xi˅xj≼xk

 

 

where µS is the Möbius function of the poset (S, ⪯). 
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Proposition 3.5. 

 

Suppose that S is join closed [10]. If [S] f  is invertible, then the inverse of [S] f  is the n × n matrix   

B = (bij), where 

  

bij = ∑
(−1)i+j

ΦS,f(xk)

n

k=1

det E(Sk
i ) det E(Sk

j
) 

 

Where E(Si
k) is the (n − 1) × (n − 1) sub matrix of E(S) obtained by deleting the kth row and the ith column of E(S), 

or 

 

bij = ∑
µS(xk, xi)µS(xk, xj)

ΦS,f(xk)
xk≼xiʌxj

 

 

where µS is the Möbius function of the poset (S, ⪯). 

 

4 MIN and MAX matrices as meet and join matrices 

 

The most straight forward attempt to interpret MIN and MAX matrices as meet and join matrices would be 

to set (P, ⪯) = (R, ≤). This, however, cannot be done since the set of  real numbers  is not locally finite (meet and 

join matrices are usually studied via Möbius inversion, which requires the local finiteness property). Nevertheless, 

there is a way around the problem. We set P = {1, 2, . . . , n}, ⪯ is the usual ordering ≤ of the integers and S = P. 

Since in this case (P, ≤) is a chain with n elements, it is trivially a locally finite lattice. Moreover, by defining 

 f : P → R by f (i) = zi for all i = 1, 2, . . . , n we obtain (S) f = (T) min and [S] f = [T] max. 

Executing the Möbius inversion is now easy due to the simple chain-structure of the poset (P, ≤) (general 

information about Möbius inversion and  Möbius functions on posets can be found). For the Möbius function of the 

chain (P, ≤) we have for  i, j ∈ P that 

 

 

    µP (j,i) = {
1 if i = j
−1 if i = j + 1
0 otherwise.

 

 

 

 

 

 

The function µP can then be used to define two other functions ψPand ΦP   as 

 

𝜓𝑃(1) =  𝑥1,                 𝜓𝑃(𝑖) =  ∑ µ𝑃(𝑖, 𝑗)𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1           𝑓𝑜𝑟 1 < 𝑖 ≤ 𝑛.

1≤𝑗≤𝑖

 

𝛷𝑃(𝑛) =  𝑥𝑛 ,                𝛷𝑃(𝑛) =  ∑ µ𝑃(𝑖, 𝑗)𝑥𝑗 = 𝑥𝑖 − 𝑥𝑖+1               𝑓𝑜𝑟 1 < 𝑖 ≤ 𝑛.

𝑖≤𝑗≤𝑛

 

It turns out that the values of the functionsψP and ΦPcharacterize many key properties of the matrices (T) min and 

[T] max by[11]. 

 

4.1 Remark: 

 

 Similarly defined functions  ψP,S,f  and  ΦP,S,f are also used in the study of more general meet and join 

matrices, but here these functions take particularly simple forms due to the simple chain-structure of the set P. 

Meet and  join matrices and their special cases GCD and LCM matrices have been studied in dozens of 

research  papers and  their basic properties are rather well known. In this article we are going to formulate  these 

general results for MIN and  MAX matrices. Since most of the results presented in this paper follow directly from 

some stronger theorem for meet and join matrices, it would not be absolutely necessary to reprove these statements. 

However, we are going to see that in many cases it is still interesting and useful to find simpler proofs that are also 

accessible to those who are not so familiar with the methods used in the study of meet and join matrices. 
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5 SOME DEFINITIONS: 

 

5.1 MINIMUM AND MAXIMUM MATRICES: 

 

Let S = {x1, x2, x3, ……… . , xn} be ordered set of distinct positive integers. The n × n matrix [S] = (𝑆𝑖𝑗), 

where 𝑆𝑖𝑗 = (𝑥𝑖 , 𝑥𝑗)  the minimum number of 𝑥𝑖and 𝑥𝑗 is called the MINIMUM (MIN) matrix.  

 

Let S = {x1, x2, x3, ……… . , xn} be ordered set of distinct positive integers. The n × n matrix [S] = (𝑆𝑖𝑗), 

where 𝑆𝑖𝑗 = (𝑥𝑖 , 𝑥𝑗)  the maximum number of 𝑥𝑖 and 𝑥𝑗 is called the MAXIMUM (MAX) matrix.  

 

5.2 FERMAT MATRICES: 

 

 Let S = {x1, x2, ………xn} be a set of distinct positive integers and the nxn matrix[S] = (sij), where 

 sij = 2
2
(xi,xj)

+ 1, call it to be Fermat matrix on S [12]. 

 

5.3 FERMAT MINIMUM MATRICES: 

 

 Let M = {x1, x2, ……… xn} be a set of distinct positive integers and the nxn matrix and [M] = (mij), 

wheremij = 2
2
min(xi,xj)

+ 1, call  it to be Fermat  MIN matrix on S. 

 

5.4 FERMAT MAXIMUM MATRICES: 

 

 Let M = {x1, x2, ……… xn} be a set of distinct positive integers and the nxn matrix and   

 [M] = (mij), wheremij = 2
2
max(xi,xj)

+ 1 call it to be Fermat MAX matrix on S. 

 

6 DETERMINANTS OF FERMAT MIN AND FERMAT MAX MATRICES: 

 

Theorem 6.1: 

 

 We consider the determinants of the matrices  

 

det(T)min = 𝜓𝑝(1)𝜓𝑝(2)……… .𝜓𝑝(𝑛) = x1(x2 − x1)(x3 − x2)……… (xn − xn−1). 

 

 det[T]max =  𝛷𝑝(1)𝛷𝑝(2)……… .𝛷𝑝(𝑛) = (x1 − x2)(x2 − x3) ………(xn−1 − xn)xn. 

 

Proof: These determinant formulas follow directly from Proposition 3.2 and Proposition 3.3. 

 

Theorem 6.2: 

 

Next we consider the determinants of the fermat  min and max matrices  

 

Det fer (T)min = 𝜓𝑝(1)𝜓𝑝(2)……… .𝜓𝑝(𝑛) = x1(x2 − x1)(x3 − x2) ………(xn − xn−1),  

                                                                           where  𝑥𝑖 = 2
2
min(xi,xj)

+ 1    𝑗 = 1,2, … . . 𝑛. 
 

Det fer [T]max = 𝛷𝑝(1)𝛷𝑝(2)……… .𝛷𝑝(𝑛) = (x1 − x2)(x2 − x3)………(xn−1 − xn)xn,  

                                                              where  𝑥𝑖 = 2
2
max(xi,xj)

+ 1     𝑗 = 1,2, … . . 𝑛. 
 

Example 1 

 

 If S = {2,3} is a lower closed set. Consider 2x2 Fermat  Min matrix on S is  

 

  Fer(S) min = [
17 17
17 257

] 

 

                           Det Fer(S) min = x1(x2 − x1) = 17x240 = 4080 
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Consider 2x2 Fermat Max matrix on S is  

 

  Fer(S) max = [
17 257
257 257

] 

 

                           Det Fer(S) max = (x1 − x2)x1 = (-240) x 257 = -61680 

 

Example 2 

 

 If S = {1, 2, 3} is a lower closed set.  

 

Consider 3x3 Fermat Min matrix on S is  

 

  Fer(S) min = [
5 5 5
5 17 17
5 17 257

] 

 

                           Det Fer(S) min = x1(x2 − x1)(x3 − x2) = 5x12x240 = 14400. 

 

Consider 3x3 Fermat Max matrix on S is  

 

  Fer(S) max = [
5 17 257
17 17 257
257 257 257

] 

 

                           Det Fer(S) max = (x1 − x2)(x2 − x3)x3 = (-12) x (-240) x 257 = 740160. 

 

Example 3 

 

 If S = {1, 2, 3, 4} is a lower closed set.  

 

 

Consider 4x4 Fermat  Min matrix on S is  

 

  Fer(S) min = [

5 5
5 17

5 5
17 17

5 17
5 17

257 257
257 65537

] 

 

                       Det Fer(S) min = x1(x2 − x1)(x3 − x2)(x4 − x3) = 5 x 12 x 240 x 65280 = 94, 00, 32,000. 

 

 

Consider 4x4 Fermat Max matrix on S is  

 

  Fer(S) max  = [

5 17
17 17

257 65537
257 65537

257 257
65537 65537

257 65537
65537 65537

] 

  

                           Det Fer(S) max = (x1 − x2)(x2 − x3)(x3 − x4)x4 =(-12) x (-240) x (-65280) x 65537 

        = -1, 23, 21,37,54,36,800. 

 

 

7 INVERSES OF FERMAT MIN AND FERMAT MAX MATRICES: 

 

 Under the assumption that the elements of the set T are distinct the MIN and MAX matrices of the set T are 

usually invertible. Next we shall find their inverses. 

 

Theorem 7.1: 

 

 Suppose that the elements of the set T are distinct. If x1 ≠0, then the MIN matrix is invertiable and the 

inverse matrix is the nxn tridiagonal matrix B = (bij), where 
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  Bij = 

{
 
 
 

 
 
 

0                          𝑖𝑓 |𝑖 − 𝑗| > 1
𝑥2

𝑥1(𝑥2−𝑥1)
         𝑖𝑓 𝑖 = 𝑗 = 1

1

𝑥𝑖−𝑥𝑖−1
+

1

𝑥𝑖+1−𝑥𝑖
    𝑖𝑓 1 < 𝑖 = 𝑗 < 𝑛

1

𝑥𝑛−𝑥𝑛−1
          𝑖𝑓 𝑖 = 𝑗 = 𝑛

−1

|𝑥𝑖−𝑥𝑗|
              𝑖𝑓 |𝑖 − 𝑗| = 1.

 

 

where  𝑥𝑖 = 2
2𝑥𝑖 + 1    𝑖 = 1,2, … . . 𝑛. 

 

Theorem 7.2: 

 

If xn ≠ 0, then the inverse of the MAX matrix is invertiable and the inverse matrix is the nxn tridiagonal 

matrix C = (Cij), where 

 

  Cij =  

{
 
 
 

 
 
 

0                               𝑖𝑓 |𝑖 − 𝑗| > 1
1

(𝑥1−𝑥2)
                  𝑖𝑓 𝑖 = 𝑗 = 1

1

𝑥𝑖−1−𝑥𝑖
+

1

𝑥𝑖−𝑥𝑖+1
        𝑖𝑓 1 < 𝑖 = 𝑗 < 𝑛

1

𝑥𝑛−1−𝑥𝑛
+

1

𝑥𝑛
       𝑖𝑓 𝑖 = 𝑗 = 𝑛

1

|𝑥𝑖−𝑥𝑗|
                      𝑖𝑓 |𝑖 − 𝑗| = 1.

 

where 𝑥𝑖 = 2
2𝑥𝑖 + 1        𝑖 = 1,2, … . . 𝑛. 

 

Proof: The inverse formulas follow straight from Proposition 3.4 and Proposition 3.5. An elementary approach 

would be to construct the supposed inverse matrices and multiply them with the matrices (T) min and [T] max. 

 

Example 4 

 

(S) is a Mersenne Min matrix on lower closed set S = {2, 3}. Then by definition 6.1  

 

  (S)−1 = B = (bij)   

 

Therefore since (S)−1 = B is the symmetric we have  

 

  (S)−1 = B = [

257

4080

−1

240
−1

240

1

240

] 

 

(S) is a Mersenne Max matrix on lower closed set S = {2, 3}. Then by definition 6.2  

 

  (S)−1 = C = (cij)   

 

Therefore since (S)−1 = C is the symmetric we have  

 

  (S)−1 = C = [

−1

240

1

240
1

240

−17

61680

] 

 

Example 5 

 

(S) is a Mersenne Min matrix on lower closed set S = {1, 2, 3}. Then by definition 6.1  

 

  (S)−1 = B = (bij)   

 

Therefore since (S)−1 = B is the symmetric tridiagonal we have  
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  (S)−1 = B = 

[
 
 
 
 
17

60

−1

12
0

−1

12

7

80

−1

240

0
−1

240

1

240]
 
 
 
 

 

 

(S) is a Mersenne Max matrix on lower closed set S = {2, 4, 6}. Then by definition 6.2  

 

  (S)−1 = C = (cij)   

 

Therefore since (S)−1 = C is the symmetric tridiagonal we have  

 

  (S)−1 = C = 

[
 
 
 
 
−1

12

1

12
0

1

12

−7

80

1

240

0
1

240

−17

61680]
 
 
 
 

 

 

Example 6 

 

(S) is a Mersenne Min matrix on lower closed set S = {1, 2, 3, 4}. Then by definition 6.1  

 

  (S)−1 = B = (bij)   

 

Therefore since (S)−1 = B is the symmetric tridiagonal we have  

 

  (S)−1 = B =  

[
 
 
 
 
 
17

60

−1

12
−1

12

7

80

0 0
−1

240
0

0
−1

240

0 0

91

21760

−1

65280
−1

65280

1

65280]
 
 
 
 
 

                                                                     

 

(S) is a Mersenne Max matrix on lower closed set S = {1, 2, 3, 6}. Then by definition 6.2  

 

  (S)−1 = C = (cij)   

 

Therefore since (S)−1 = C is the symmetric tridiagonal we have  

 

  (S)−1 = C = 

[
 
 
 
 
 
−1

12

1

12
1

12

−7

80

0 0
1

240
0

0
1

240

0 0

−91

21760

1

65280
1

65280

−257

4278255360]
 
 
 
 
 

 

 

CONCLUSION: 

  

 In this paper, the different properties of MIN and MAX matrices of the set T with min (xi, xj) and max 

(xi, xj) as their (i, j) entries like determinant value and inverse of MIN and MAX matrices have been studied. The 

study is carried out by applying known results of meet and joins matrices to Fermat min and Fermat max matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.jetir.org/


© 2019 JETIR  January 2019, Volume 6, Issue 1                                  www.jetir.org  (ISSN-2349-5162) 

JETIRR006003 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 25 
 

7 REFERENCES: 

 

1. R. Bhatia, Infinitely divisible matrices, Amer. Math. Monthly 113 no. 3, 221–235, 2006. 

2. R. Bhatia, Min matrices and mean matrices, Math. Intelligencer 33 no. 2, 22–28, 2011. 

3. H. Neudecker, G. Trenkler, and S. Liu, Problem section, Stat Papers 50, 221–223, 2009. 

4. G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Vol. II, 4th ed., Springer, 1971. 

5. B.V. Rajarama Bhat, On greatest common divisor matrices and their applications, Linear Algebra Appl. 

158, 77–97, 1991. 

6. S. Puntanen, G. P. H. Styan, and J. Isotalo, Matrix Tricks for Linear Statistical Models -Our Personal Top 

Twenty, 1st ed.,Springer, 2011. 

7. R.P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth and Brooks/Cole, 1986. 

8. P. Haukkanen, On meet matrices on posets, Linear Algebra Appl. 249 , 111–123, 1996. 

9. E. Altinisik, N. Tuglu, and P. Haukkanen, Determinant and inverse of meet and join matrices, Int. J. Math. 

Math. Sci. Article ID 37580  2007. 

10. M. Mattila and P. Haukkanen, Determinant and inverse of join matrices on two sets, Linear Algebra Appl. 

438, 3891–3904, 2013. 

11. Mika mattila and Pentti Haukkanen, Studying the various properties of MIN and MAX matrices-elementary 

vs. more advanced methods, Spec. Matrices , 4:101-109,2016. 

12. Serife Buyukkose, The mersenne meet matrices on posets, Int. J. Contemp. Math. Sci., Vol. 1, no. 10, 469-

474, 2006. 

 

 

5. Conclusion 
Furthermore, we give the exact determinants and the inverse matrices of Fermat and Mersenne left circulant matrix. 

Meanwhile, the non singularity of these special matrices is discussed. On the basis of circulant matrices technology, 

we will develop solving the problems in [19–22]. 

Some of the most important 

properties of Fermat GCD matrices are presented in terms of meet matrices. 
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